In a first series of experiments, the biological response of a continuous cell line of the beet armyworm, Spodoptera exigua, was tested with different groups of insecticides with different modes of actions: acetylcholinesterase inhibitors, acetycholine receptor agonists, inhibitors and uncouplers of oxidative phosphorylation, site I electron transport inhibitors, gamma-aminobutyric acid receptor inhibitors, chitin synthesis inhibitors, and juvenile hormone analogues. From the concentration response curves, 50% inhibition concentration (IC50) values were calculated. The most active compound in vitro was pyridaben with an IC50 value of 0.0083 ppm. In a second series of experiments, the toxicity of these insecticide groups was determined on third-instar larvae of S. exigua, and lethal concentration with 50% kill (LC50) values were used in the evaluation of their in vivo biological activity. Toxicity bioassays showed that lufenuron was the most toxic (LC50 = 0.098 ppm). To explain the discrepancies in biological responses in vitro with insect cells compared with in vivo conditions with whole third-instar larvae, the significance of different detoxifying enzyme systems was tested. P450 monooxygenases, esterases, and glutathione S-transferases were measured in third-instar larvae and cells of S. exigua. Data are discussed in terms of the usefulness of insect cell cultures as tools in the screening for novel insecticide actions.